
Draft Document for Review August 2, 2010 4:35 pm 7868ch12.fm
Chapter 12. Appendix 1- RDz
Productivity Benchmarks

This Appendix documents a Benchmark completed in March 2010 that compared
two IBM products: RDz v7.6.1 and ISPF v6.0.

The work performed in the study was a set of tasks normally associated with
traditional z/OS COBOL maintenance and production support:

� Code analysis - paragraph flow and program structure analysis

� Navigating and modifying existing COBOL programs

� Adding a small amount of new business logic to an existing program

� Updating fields in copybooks and modifying code that referenced to updated
fields

� Doing tradition Data Flow analysis

� Working with SQL and DB2 test data

� Compiling and linking a program

The detailed scripts used by participants in the study may be found on the ITSO
server at: (Chris to provide)

12
© Copyright IBM Corp. 2010. All rights reserved. 57

7868ch12.fm Draft Document for Review August 2, 2010 4:35 pm
12.1 Reasons for the study

Back in the early 90’s there was a noticeable shift in the breeze within trendy, I/T
magazines and academia - where writers argued that production workloads
could be “downsized” off mainframes to distributed platforms. Outrageous and
almost entirely unsubstantiated claims were made - which unfortunately went
under-analzyed and the net was that entire web-sites now exist that document
the cost and other unintended consequences of wishful thinking posing as
research: http://www.actscorp.com/reboothill.htm

Even today, the idea that you can replace a mature, stable, scalable, powerful,
manage-able centralized hardware platform with immature, (relatively) unstable,
un-manage and un-supportable server farms and complex application stacks
simply doesn’t account for the complexity, scale and scope of “production
workload” file and database I/O sizing, transaction and batch window throughput.

We’re sorry - but except for very small shops or for small departmental
applications, the most cost-effective place to run mission-critical and
performance-snsitive enterprise applications is - and will be for a long, long time
to come on a centralized z/Server.

However, mainframe software development done off the mainframe has been
a beguiling concept for at least a few decades. Development would seem both
practical and productive, given today’s desktop technology. And of course,
mainframe software development and maintenance is both practical and do-able
with the tools of the optimized lifecycle, but... is it really more productive? What
tangible evidence exists that proves RDz is actually a more productive
development platform than green screen (ISPF)? And if so - exactly how much
more productive? And for whom is it more productive.

These are questions that IBM management put to the Redbook team late in
2009. Specifically, they asked us to design a comparison study between two
IDEs:

� ISPF version 6.0 running on a z/10

� RDz v7.6.1 running on thnk

The study was to be conducted as follows:

� An “apples to apples” comparison of the two IDEs

� A sizeable number of participants

� Focus on z/OS traditional maintenance tasks that are common, everyday

� A true research project - with double blind controls, etc.
58 Best Practices for z/OS Traditional Development, Maintenance, and Support

Draft Document for Review August 2, 2010 4:35 pm 7868ch12.fm
12.2 Design of the Study

In attempting to satisfy the above criteria, the IBM team started by polling a
number of ISPF/COBOL programmers to determine what kinds of activities were
consistent day-in/day-out. The ISPF/COBOL programmers were from within IBM,
from business partners and customers.

A large task list of 100 discrete activities was created for ISPF - and verified with
the ISPF/COBOL programmer team. These 100 tasks were broken out into
seven categories:

1. Code navigation

2. Edit operations (basic ISPF edit operations)

3. COBOL coding - adding a new paragraph to an existing COBOL program with
changes to the copybooks

4. Data flow analysis - following the value in a variable as it is moved from f

5. Code/syntax error removal

6. Build - compile and link

7. DB2 and SQL work - modifying DB2 table values, creating new rows, writing
and testing SQL statements

While this is obviously not an all-inclusive list of what z/OS developers do (not
included are things such as: VSAM and data file maintenance, and debugging),
after vetting the list with the ISPF/COBOL programmer group, it was determined
that all of the tasks were standard fare, for developers week-in/week-out.
However, we encourage you to pull down copies of the scripts and see for
yourself (Chris... need the ITSO Server URL here- thanks)
 Chapter 12. Appendix 1- RDz Productivity Benchmarks 59

7868ch12.fm Draft Document for Review August 2, 2010 4:35 pm
12.3 Human Factors Avoidance

As far as possible, every attempt was made to remove "Human Factors" and bias
from the research - by doing the following:

� As you will see from the scripts (figures 12-1 and 12-2), close-ended,
click-for-click detailed instructions were follwowed to minimize:

– Think time

– Differences in

• Product (ISPF or RDz) experience

• Typing speed

• Application development experience

� Project participants were told that they were trying to find gaps between RDz
and ISPF functionality - this was a single-blind research tactic, attempting to
mitigate subliminal bias

� 50% of those participants that did both the RDz and ISPF scripts did the RDz
scripts first, and the other 1/2 did the ISPF script first. This was done to
mitigate "learning and retention" bias

12.3.1 ISPF “Bias”

Speaking of bias, there were two areas of the study that were biased towards
ISPF and against RDz:

1. The scripts were written from ISPF not an RDz perspective. In other words,
we created the scripts based on what ISPF developers do daily with ISPF -
and adjusted RDz’s script to functionally match what was done with ISPF. This
biased the results against what might have been achieved had we started
from an RDz perspective, and tried to match ISPF to the product’s
capabilities.

2. The way the tests were administered was optimized for ISPF - not RDz.
Because the scripts were exceedingly long (the 100 steps for ISPF were
documented in 676 rows of a spreadsheet (at 10 pt font) - it was decided that
printing off hard-copy and reading would not work. So instead, the
participants were told to display the script alongside ISPF or RDz, and to
“read and scroll”. This worked well for ISPF - as most participants were in
32/80 mode, and ISPF fit perfectly in view full-screen, but RDz had to be
minimized, excessive horizontal scrolling was necessary and many of the
benefits of RDz’s/Eclipse MS-Windows orientation were vastly reduced,
because developers were viewing 2/3rds of the product.
60 Best Practices for z/OS Traditional Development, Maintenance, and Support

Draft Document for Review August 2, 2010 4:35 pm 7868ch12.fm
12.3.2 Participant Characteristics

There were 23 participants in the study - from:

� Business partners

� Customers

� Academia

� IBM internal

– ISPF consultants - mostly Global Business Services professionals

– Rational tech-field

The average years of experience of participants were:

� ISPF - 12.7 years

� RDz - 1.3 years

Summary
Given the above control mechanisms it should be clear that every attempt was
made to meet the research goals set down by IBM management (“apples to
apples” comparison, etc.). For the most part, the standard deviation statistics
bore out that we met these goals.

That said, this does not mean that the Benchmark results should be interpreted
as academic (Underwriter’s Laboraties) quality research, and all performance
data contained in this publication was obtained in the specific operating
environment and under the conditions described in this publication and is
presented as an illustration only.

Performance obtained in other operating environments may vary and customers
should conduct their own testing.
 Chapter 12. Appendix 1- RDz Productivity Benchmarks 61

7868ch12.fm Draft Document for Review August 2, 2010 4:35 pm
Figure 12-1 Destail script for ISPF Tasks
62 Best Practices for z/OS Traditional Development, Maintenance, and Support

Draft Document for Review August 2, 2010 4:35 pm 7868ch12.fm
Figure 12-2 Detailed script - RDz Tasks

12.4 Task Summary Results – All Participant Subset

The data from individual timings (down to the second) for each participant doing
each task were entered into a spreadsheet, and the results were then graphically
summarized (see figure 12-3) as the percentage less time it took for all
participants to complete the 100 tasks. In the bar chart, zero (0) represents the
ISPF baseline default.

You may note that some categories of tasks showed more or less productivity, but
overall, the results were favorable for RDz across the board.
 Chapter 12. Appendix 1- RDz Productivity Benchmarks 63

7868ch12.fm Draft Document for Review August 2, 2010 4:35 pm
We will analyze these results in a bit, but before doing that, it’s worth noting that
we also broke out the participants into a subset of what we called “TSO Top Gun”
developers.

Figure 12-3 “All Participants” results - the percentage less time to complete the 100 tasks using RDz

The TSO Top Gun developers were developers who characterized themselves
as:

� Current with ISPF

� With at least 20 years of ISPF experience
64 Best Practices for z/OS Traditional Development, Maintenance, and Support

Draft Document for Review August 2, 2010 4:35 pm 7868ch12.fm
� Had accurate and fast typing skills

We felt that these individuals represented a specific veteran ISPF-oriented
constituent subset of most z/OS shops, so we created another set of summary
statistics for them (see figure 12-4).

12.5 Task Summary - TSO “Top Gun” Participants

Figure 12-4 “TSO Top Gun” results - the percentage less time to complete the 100 tasks using RDz
 Chapter 12. Appendix 1- RDz Productivity Benchmarks 65

7868ch12.fm Draft Document for Review August 2, 2010 4:35 pm
From 12-4 you can see that the TSO “Top Gun” developers lived up to their
nickhame. Their results were better (and often significantly better) in most work
categories than the pool of all developers - which would represent in any given
shop your Entry Level programmers combined with TSO Top Gun users.

While most shops sport a healthy mix of experienced and Entry Level
programmers (and will more and more over the next 10 years as the Generation I
programmers near retirement), the standard deviation for the Top Gun group was
- across the board in the single digits and often as low as 2 or 3 (showing
consistent and stastically significant results).

12.6 Analysis – and Feedback From Participants

After each person completed their work and returned the spreadsheet, we asked
closed and open-ended questions regarding what they believed the reasons
were for the RDz productivity. The results were a little surpring but uniform:

There were four sources of productivity:

1. (Significantly) less typing with RDz

2. RDz Advanced Tooling

3. Better use of Screen Real Estate

4. Responsive Desktop/Windows Environment

The reason these were “surprising” was that it’s usually assumed that the
superior engineering that goes into new technology is the primary reason for
improvements. At least in the case of the study the engineering was definitely a
factor, but there were many other positive factors - or “unintended consequences”
of Eclipse and RDz development.

12.6.1 (Significantly) less typing

Every activity on ISPF requires some degree of typing – and typically custom
typing (unique Find/Change commands, line location, etc.). Even navigation is
done with typing (=3.14, =P.DB2.3, etc.)

With RDz most of those same actions and developer activities have been
encapsulated into Declarative Tooling (Context menus,
Intelli-sense/language-sensitive editing, etc.) - and the typing differential (as
emphasized by this section sub-header) is not a trival amount. Those
participants that did both the ISPF and RDz scripts (and all 23 participants did
both) consistently lised “less typing” as their number one reason for productivity.
66 Best Practices for z/OS Traditional Development, Maintenance, and Support

Draft Document for Review August 2, 2010 4:35 pm 7868ch12.fm
As an example of this, with ISPF development activities that involve working with
program copybooks/includes require significantly more effort than RDz - where
there are context menu options used to open and browse copybooks.

12.6.2 Integrated/Language-Sensitive/Hyper-linked/Feature-rich
Tooling

The green-screen (ISPF) development paradigm is a manual and linear
development process model, and the tools require constant panel navigation in
order to access needed functionality (more typing/more MIPS - through every
PF-Key and Enter key pressed, etc.).

There is no hyper-linking of temporary results (for example, Search and Syntax
errors), and no integration among or between the ISPF tools. DB2 Table editing is
done by entering long and cumbersome SQL INSERT or UPDATE statements,
etc.

RDz integrates almost all common development functionality into a single-system
“concurrent development” view and the features and facilities needed to do
something are available without navigation (context menus, etc.)

RDz hyper-links source results whenever possible, to further dial back
superfluous navigation.

12.6.3 Use of Windows-graphical "Screen Real-Estate"

ISPF allows developers to see from 24 to 55 lines of source at a time – however
there is a lot of wasted real estate and the fidelity of the source view is a problem
when you work with 40 or higher lines..

RDz provides up to 190 lines of source viewing (and editing) in split-screen
mode, with virtually no wasted real estate. This is because RDz allows vertical
screen splitting - a more efficient way to handle 80-column COBOL statements.

With RDz, you can:

� Copy/Paste between open views of the same or different source files

� Edit the same program in two different areas simultaneously - which is useful
and not possible for ISPF

� See the results of a change reflected across all open windows immediately
 Chapter 12. Appendix 1- RDz Productivity Benchmarks 67

7868ch12.fm Draft Document for Review August 2, 2010 4:35 pm
12.6.4 Responsive Desktop/Windows Environment

Even though the IBM mainframe provided sub-second response time for the tests
(even the compile and link jobs finished in less than a second - for all
participants), the ability to use the desktop environment (real-time Scroll bars,
PgUp/PgDn etc.) was still appreciably - if not significantly faster for certain tasks
standard programming tasks (like aligning code on-screen to specific statements,
code navigation, etc.)

This was interesting to one of the authors as going back to the late 1980’s when
“downsizing” was the I/T mantra, it was assumed that mainframes were not
“flexible and responsive - enough”. At least in this study a germ of truth was
found for this - although it was the smallest factor in the RDz benefits list.

12.7 Mitigating Factors

� The following must be noted about Benchmarks - in the spirit of transparent
analysis:

� No use of custom ISPF Edit Macros

– Many shops (and individual programmers within shops) have developed
and use custom editing macros during their work

– These macros would in all likelihood improve have improved the ISPF
Benchmark results

– To what degree is unknown…but possibly as much as: 5-10%

• Note that the reason for not using any ISPF Edit Macros was that every
shop’s (and programmer’s) macros are likely unique - and so the
applicability of testing for a given unique macro would be low - to the
vast majority of shops

• However everyone uses ISPF options: 3.4, option 2, option 1,
split-screen, TSO Job submission, etc.

� No use of custom RDz Macros:

– In the same way, mature RDz shops have either re-created their Macro
facilities in RDz, or have created their own unique extensions to the editor.

– These would in all likelihood improve the RDz results as much as: 3 – 5%

• As a short experiment - if you return to the results for the TSO Top Gun
Developers (figure 12-4) and factor in a 10% improvement in ISPF
productivity through macros then factor in a 3% improvement in RDz
productivity (a 7% overall improvement) you will probably still find the
results - a net: 23% improvement in productivity, conspicuous.
68 Best Practices for z/OS Traditional Development, Maintenance, and Support

Draft Document for Review August 2, 2010 4:35 pm 7868ch12.fm
� Years of ISPF experience

– The ISPF development experience (12.7 years) of the participants is
considerably more than the RDz experience (1.3 years)

– Howeve many shops have groups of developers with 20+ years of ISPF
experience

– You may wonder (as we did) how much more productive you get after
almost 13 years of using a product - however, we felt this should be called
to your attention.

– This issue was also mitigated as far as possible through the use of the
detailed:

• ISPF script (down to the PF-Key to be pressed)

• RDz script (down to the context-menu used)

12.8 Summary

In this section we have introduced you to a recent study done comparing two IBM
products. We:

� Described the participant demograpics

� Detailed the methodology

� Presented the findings

� Analyzed the results

Again - if you’re interested in obtaining the scripts used in the study please visit
the ITSO site.
 Chapter 12. Appendix 1- RDz Productivity Benchmarks 69

7868ch12.fm Draft Document for Review August 2, 2010 4:35 pm
70 Best Practices for z/OS Traditional Development, Maintenance, and Support

	Chapter 12. Appendix 1- RDz Productivity Benchmarks
	12.1 Reasons for the study
	12.2 Design of the Study
	12.3 Human Factors Avoidance
	12.3.1 ISPF “Bias”
	12.3.2 Participant Characteristics

	12.4 Task Summary Results – All Participant Subset
	12.5 Task Summary - TSO “Top Gun” Participants
	12.6 Analysis – and Feedback From Participants
	12.6.1 (Significantly) less typing
	12.6.2 Integrated/Language-Sensitive/Hyper-linked/Feature-rich Tooling
	12.6.3 Use of Windows-graphical "Screen Real-Estate"
	12.6.4 Responsive Desktop/Windows Environment

	12.7 Mitigating Factors
	12.8 Summary

