	Control Flow Constructs
	Description
	Freq.

	PROCEDURE DIVISION/USING
	A “Run Unit” – which may or may not have an ENTRY statement
	3

	· ENTRY XYZ USING. Can call to program and to a paragraph using ENTRY statements.
	Program-level Label – callable by the z/OS or any linked executable. You can code ENTRY anywhere in the PROCEDURE DIVISION. Meaning that you could turn a paragraph into a Linked Module with an ENTRY PARA-NAME statement. This is rare.
	2

	Program end or exit:
	Termination of Run Unit
	3

	· CALL
	Transfer of control to an external executable – note that there is a z/OS CALL and an EXEC CICS CALL – both of which transfer control
	3

	· EXEC CICS LINK
	CICS control transfer out of the program – return is expected
	2

	· EXEC CICS XCTL
	CICS control transfer out of the program – without having to return
	2

	· GOBACK
	Ends the current Run Unit and returns control to z/OS – or to a calling module
	3

	· EXIT
	Ends a subroutine and returns control to the calling program
	1

	· EXEC CICS RETURN
	Returns control to the module that is LINKED or CALLED
	2

	· STOP RUN
	Ends the current Run Unit and returns control to z/OS
	2

	· ABEND
	Terminates the Run Unit throwing a z/OS error
	1

	Internal program procedural flow – It would be useful for the diagram to notate conditional vs. unconditional flow
	PERFORM statements create a “perform chain” – machine code that returns to the NSI (Next Sequential Instruction after the PERFORM) at the logical end of the chain
	

	Potential Fall Thru situations

	· Paragraphs coded within COBOL SECTIONS
	All executable statements within Paragraphs are executed sequentially/physically downward thru the source until the next SECTION Label is hit – this includes Paragraph and all code within paragraphs
	1

	· GO TO statements that transfer control outside of the “Perform Chain”
	Paragraph labels are ignored and all statements are executed sequentially downward until the physical end of program code is hit, or one of the above Program Exit statements occur. Note that GO TOs are operational
	1

	· PERFORM <label>
	There are both inline and external PERFORM statements. External PERFORM statements reference a paragraph(label). Note that inline PERFORM statements almost always execute non-control flow statements
	3

	· PERFORM n TIMES
· DO WHILE
	Branch to a paragraph or SECTION n number of times – when n is reached execute the NSI after the PERFORM statement
	2

	· PERFORM UNTIL
· DO UNTIL
	Branch to a paragraph or SECTION until a given condition (IF logic) is met. When the logical condition tests true execute the NSI after the PERFORM statement
	3

	· PERFORM <paragraph> THRU <exit_paragraph>
	Branch to paragraph and execute all logic between paragraph and exit_paragraph. The compiler sets up a “Perform Chain” with Branch instructions
	2

	· GO TO - Any label anywhere within the PROCEDURE DIVISION
	Transfer control to any label in the Run Unit – including back to the current paragraph in a procedural DO loop.
	3

	· ALTER
	Dynamically modify the destination label of a GO TO statement at run time. Almost never seen in a current production stack
	< 1

	· EXIT
	Return to the NSI (Next Sequential Instruction) after the PERFORM statement
	

	· PARAGRAPH/SECTION
	Branch back to the NSI at the logical end of the PERFORM chain
	1

	· PERFORM
	End an inline PERFORM Loop
	1

	· PROGRAM
	See Program EXIT above
	2

	· SORT/MERGE
	Used to collate/merge external file records based on key field(s)
	

	· INPUT PROCEDURE
	Branches to a COBOL SECTION to read & process the input file
	1

	· OUTPUT PROCEDURE
	Branches to a COBOL SECTION to sort & process the output file
	1

	Embedded (EXEC SQL WHENEVER) Transfers – using GO TO a given label
· SQLERROR
· SQLWARN
· NOT FOUND
	EXEC SQL WHENEVER statements setup a condition (insert machine code) at the end of every EXEC SQL operational statement in a Run Unit – to branch to a label when an error (SQLCODE < 0) or warning (SQLCODE > 0) or NOT FOUND/SELECT (SQLCODE = 100) occurs
	1

	EXEC CICS – HANDLE CONDITION
	“Handle Condition” == “WHENEVER” - Same behavior as the embedded SQL – except found in an EXEC CICS statement.
	2

	

	Use Case programs
	Description
	Results

	USECASE1
	Sequential Fall Thru Logic – no GOBACK or STOP RUN
	

	USECASE2
	Sequential Fall Thru Logic – STOP RUN
	

	USECASE3
	Sequential Fall Thru Logic – GOBACK
	

	USECASE4
	Call to SUBROUT1 – STOP RUN
	

	USECASE5
	Call to SUBROUT1 – GOBACK
	

	USECASE6
	Call to SUBROUT1/PARA3 - ENTRY statement in PARA3
	

	USECASE7
	Sequential Logic – PERFORM Statements
	

	USECASE8
	Sequential Logic – PERFORM chain
	

	USECASE9
	Sequential Logic – GO TO Statements
	

	USECASEA
	Mix of COBOL SECTIONs and Paragraphs
	

	USECASEB
	Mix of COBOL SECTIONs and Paragraphs
	

	USECASEC
	GO TOs with a conditional GOBACK in PARA7
	

	USECASED
	GO TOs with an unconditional GOBACK in PARA7
	

	USECASEE
	Random PERFORMs
	

	USECASEF
	No STOP RUN or GOBACK (Falls thru)
	

	USECASEG
	Backwards Go Tos
	

	CNTRLBRK
	Sort Statement with INPUT & OUTPUT Sections
	

